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Correlation measurements in a non-frozen 
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By M. J .  FISHER AND P. 0. A. L. DAVIES 
Department of Aeronautics and Astronautics, University of Southampton 
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The properties of a turbulent flow are often described in terms of velocity 
correlations in space, in time, and in space-time. In this paper the interpretation 
of velocity correlation measurements which are made in a region of high- 
intensity turbulence is considered in some detail. Under these conditions it is 
shown that some account must be taken of the effects of both mean and 
fluctuating shear stresses which are continuously modifying the turbulent 
structure. For an almost frozen pattern, for example, in the turbulence behind 
a grid, the turbulent convection velocity is amost equal to the mean flow 
velocity, while the space correlation and auto-correlation of the velocity 
fluctuations are simply related through this velocity. In  contrast to this, when 
the intensity is high, the convection velocity may differ considerably from the 
mean velocity, while it is shown that different turbulent spectral components 
appear to travel at different speeds. This means that the turbulent spectrum 
and the turbulent space scales are no longer simply related. For example, the 
high-frequency spectral components may be ascribed to both the high-velocity 
eddies and the small wave-number components acting together. 

Experimental results are presented which indicate the conditions under which 
the assumption of a frozen pattern leads to uncertainties in the subsequent 
interpretation of the measurements. The measurements also show that the 
observed difference between the mean and the convection velocity may be 
qualitatively explained in terms of the skewness of the velocity signals. 

1. Introduction 
The investigation of various types of turbulent flow has received considerable 

impetus during the last decade because of the importance of the pressure 
fluctuations associated with these flows. The fluctuations of greatest practical 
interest at  the present time are those associated with turbulent shear flows, in 
particular the turbulent boundary layer and the turbulent jet. 

The use of correlation techniques to examine the statistical properties of 
turbulent velocity and pressure fluctuations is now well known. One may cite 
the experiments of Townsend (1  947) on isotropic turbulence, the investigations 
of the turbulent boundary layer due to Favre, Gaviglio & Dumas (1957, 1958) 
and Willmarth (1959) and the investigations of jet turbulence due to Laurence 
(1956) and Davies & Fisher (1963), to mention but a few. However, some 
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care is necessary in the interpretation of correlation measurements in the pre- 
sence of a mean shear and an appreciable turbulence intensity. This is due 
to the fact that turbulence is being continuously created and modified by the 
shear stresses. Thus Taylor’s hypothesis (Taylor 1938), that turbulence may be 
regarded as a frozen pattern of eddies being swept past the observer, is no longer 
strictly valid. From a consideration of the terms in the Navier-Stokes equations, 
Lin (1953) has in fact shown that Taylor’s hypothesis is valid only if the turbu- 
lence level is low, viscous forces are negligible and the mean shear is small. 
The aim of the present paper is to discuss briefly the information that can be 
obtained from correlation measurements and particularly to examine their 
interpretation for both a frozen and non-frozen pattern of turbulence. In 
addition an experiment carried out in the mixing region of a subsonic jet is 
described in which the correlation properties, in particular the convection 
velocity and the time scale, have been measured as a function of the frequency 
of the turbulence. The spectrum function of the temporal fluctuations asso- 
ciated with various components of the turbulence is also estimated. 

The results indicate clearly that the detailed interpretation of correlation 
measurements in regions of high shear and appreciable turbulent intensity is 
subject to large uncertainties. The convection velocity of the velocity fluctua- 
tions is found to be frequency dependent, increasing with increased frequency. 
This suggests that to some extent the higher frequencies may be due to high 
velocity components rather than large wave-number eddies as would be sug- 
gested by a constant value of the convection velocity. Further difficulties, 
arising from the asymmetric distribution of the velocity signal about its mean 
(Davies & Fisher 1963) are discussed in detail in $52.5 and 3. The spectra of the 
temporal fluctuations associated with the various turbulence components (see 
figure 7 and $2.4) indicate that the associated energy is distributed over a 
considerable frequency range. Evaluation of these frequencies from the experi- 
mental results lends strong evidence to the hypothesis of Q 1.3 that these temporal 
fluctuations are strongly associated with a range of eddy velocities around the 
convection velocity. 

The observed differences between the convection velocity and mean velocity 
of the flow, as observed in the mixing region of a jet, is discussed in $2.5. 
It is shown that this difference can be due to the skewness of the probability 
density diagram of the velocity fluctuations, the convection velocity being 
higher than the mean velocity for positive skewness, the converse being true 
for regions of negative skewness, 

1.1. Correlation techniques 

The correlation coefficients most commonly measured are the space correlation, 
the auto-correlation and the cross-correlation, the former two being merely 
special cases of the more general cross-correlation coefficient. Cross-correlation 
measurements involve the correlation of signals from two spatially separated 
measuring positions, the signal from the upstream point being delayed by a 
time T. Thus if ~ ~ ( 0 ,  0 )  denotes the signal received at  one point at time t = 0 and 
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v2(x, 7) denotes the signal received at a point distance x from the first at time 
t = r their cross-correlation coefficient R(x, 7) may be defined as 

where the over-bar denotes an average over a period of time sufficiently long to 
obtain stationary values. 

The space correlation, which involves the comparison of the instantaneous 
signal received at  two spatially separated measuring points is thus merely the 
cross-correlation for zero time delay, i.e. R(x, 0), whilst the auto-correlation 
coefficient, which involves the correlation of the signal received at  a measuring 
point with the signal received at  the same point a time I- previously is the cross- 
correlation for zero separation of the measuring points, i.e. R(0,r) .  We may also 
note in passing that the auto-correlation curve is the Fourier transform of the 
power spectrum of the turbulence. Finally, we may deduce from the inverse 
spreading relation between Fourier transform pairs that if the auto-correlation 
curve is a slowly decreasing function the turbulent spectrum will comprise a 
narrow band of frequencies, the converse also being true. 

1.2. The frozen pattern 

On the assumption of Taylor's hypothesis (see 5 1) we see that a signal received 
at one measuring position will be received at a second position, distance x1 
directly downstream from the first, at  a time, r l ,  later. Thus the value of the 
particular cross-correlation coefficient R(xl, r l )  will have a maximum value of 
unity. We may thus define the velocity of convection, U,, of the pattern as the 

Since R(xl, T ~ )  represents the maximum value of the cross-correlation curve 
for the measuring-point separation x1 we may alternatively define the con- 
vection velocity as the ratio x1/7 for which aR(xl, r)/a? = 0. Alternatively we 
can consider a fixed value of the time delay and vary the measuring-point 
separation. An identical velocity is then defined as the ratio x/rl for which 
aR(x, rl)/ax = 0. However, it  is important to realize that it is only when the 
temporal rate of change of the turbulent pattern is zero that these two definitions 
are equivalent. 

It is also obvious that the auto- and space-correlation coefficients are exactly 
related, for such a frozen pattern, through the convection velocity by the 

x1/71- 

relation R(7) = R(x  = q 7 ) .  
Further we may deduce from the frozen nature of the pattern that all eddies 
travel with this unique velocity and hence the mean velocity and convection 
velocity are identical. 

Let us finally consider the meaning and interpretation of the energy spectrum 
of a frozen pattern of turbulence. Consider a series of cross-correlation measure- 
ments performed at  a number of measuring-point separations xi (i = 1, 2, 3, . . ., 
etc.). Each cross-correlation curve will pass through a maximum value unity 
at a value of the time delay T~ where r i  = xi/Uc. 

7-2 
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The auto-correlation in a frame of reference moving with the convection 
velocity will thus be the line R ( x -  CLr, 7) = 1. Fourier transformation of this 
moving-axes auto-correlation will yield a spectrum in which the power is con- 
tained in an infinitely narrow band of frequencies centred on zero frequency. 
Thus an observer travelling with the convection velocity is aware only of 
turbulence components of zero frequency. Hence the spectrum observed in the 
stationary frame of reference is not due to any temporal turbulence fluctuations, 
but due to eddies being convected past the observer at  the convection velocity. 
Thus any fixed-frame frequency f is related to the spatial extent, A, of the eddy 
producing it by a relation of the form 

This may alternatively be written 
f = (</A. 

w = 271-f = KU,, 

where K denotes the wave-number of the eddy. Hence to summarize for a 
frozen pattern we see that : 

(a )  The convection velocity can be measured from a knowledge of the time 
delay which will maximize the cross-correlation curve for a particular measuring 
point separation. In addition this velocity and the mean velocity of the flow 
are identical. 

( b )  The space- and auto-correlation curves are simply related through this 
velocity. 

( c )  A knowledge of the turbulence spectrum and the convection velocity 
permits the measurement of the spatial extent of the component eddies. 

1.3. T h e  non-frozen pattern 

Let us next consider the situation which is encountered in practice with both 
the turbulent boundary layer and the turbulent jet. Here the presence of 
shearing forces cause the convected pattern to change as it travels downstream. 
The result of a series of cross-correlation measurements of such a pattern is 
shown in figure 1. It can be seen that although each cross-correlation curve 
rises to a maximum at some value of the time delay, clearly indicating the 
presence of convection, the amplitude of this maximum is a function of the 
measuring-point separation. In  addition the convection velocity is no longer 
defined by the time delay at which the maximum of a particular cross-corre- 
lation curve occurs, but by the time delay at  which the envelope of all the cross- 
correlation curves intersects the curve for a particular measuring point separa- 
tion. For consider an observer travelling at  the velocity so defined. The auto- 
correlation in his frame of reference is the envelope of the cross-correlation 
curves and geometric consideration of figure 1 shows that this is the auto- 
correlation curve having the maximum time scale, the time scale being defined 
as that time delay for which the moving axis auto-correlation falls to a value l j e .  
Thus it is in this frame of reference that the temporal rate of change of the 
turbulence is a minimum. It thus seems physically acceptable that it is this 
velocity which defines the mean rate of transport of the energy bearing eddies, 
i.e. the convection velocity. Further at any particular instant of space and 
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time the eddy pattern is changing at  a rate given by dR(x,  r)/dr. Thus, if the 
observer is travelling with the eddy velocity, the auto-correlation in his frame 
of reference should also be changing at this same rate. Thus for any distance 
downstream the auto-correlation in his frame of reference should be a tangent 
to the fixed axis cross-correlation curve for that distance, i.e. the envelope of 
the cross-correlation curves as we have suggested. One further point in favour 
of this definition of convection velocity can be seen from consideration of the 
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FIGURE 1. Space-time correlation of axial velocity fluctuations (downstream 
separation). Fixed wires a t  XID = 1.5, P/D = 0.5. 

turbulence spectrum observed in this frame of reference. We have already noted 
that, for a frozen pattern of turbulence, the effect of convection is to broaden 
the band of observed frequencies. Although for an unfrozen pattern of turbu- 
lence a band of truly temporal, turbulent frequencies will exist, any convection 
of the turbulence relative to the observer will similarly broaden the band of 
observed frequencies. Thus a good criterion for the definition of the moving- 
axis auto-correlation in a frame of reference moving with the convection velocity 
might well be that auto-correlation which, when transformed, will yield the 
narrowest band of temporal frequencies. From the inverse spreading relation- 
ship between Fourier-transform pairs, mentioned previously, we see that this 
is the auto-correlation of maximum time scale as suggested above.? 

p Since the initial preparation of this paper the problem of defining a meaningful con- 
vection velocity in turbulent shear flows has been discussed by Wills (1963). It is suggested 
that a meaningful definition of the convection velocity is the ratio X / T  ( S/T in Wills’s notation) 
a t  the point where ~ R ( x , T ) / ~ x  = 0. In the definition suggested above we have demanded 
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Certain difficulties now arise, however, in obtaining turbulence scales from 
spectrum measurements in a fixed frame of reference. The existence of a finite 
moving-axis time scale indicates that turbulence frequencies arising from 
temporal fluctuations are present as well as those which are due purely t o  
convection as encountered in the frozen pattern situation. It is of some interest 
to what follows to discuss briefly the possible origins of these temporal fluctua- 
tions. It is often convenient to assume that all components of the turbulent 
pattern travel downstream with the convection velocity. In this case the 
temporal frequencies must be due to the distortion of the component eddies as 
they are acted upon by the mean shear. However, it  is felt that this concept is 
an over-simplification of the true situation. The results of experiments to 
examine the fluctuation of turbulence velocity signals about their mean (Davies 
& Fisher 1963) indicate that eddies travelling with a wide range of velocities 
are present in, for example, the shear layer of a subsonic jet. Consider now an 
eddy of wave-number K travelling with a velocity U .  To a stationary observer 
this eddy appears as a component of €requency wj = K U ,  whereas to an observer 
in a frame of reference travelling with the convection velocity it appears as a 
component of frequency w, = K I U - U,]. Thus it is apparent that even neg- 
lecting the distortion of the component eddies as they travel downstream, 
non-zero frequency components can be observed in the moving frame due to a 
range of eddy velocities about the convection velocity. It is by no means clear 
at present which of these two effects, if either, is dominant in producing the 
turbulence spectrum observed in the moving frame of reference. Indeed one 
might well expect an eddy travelling at  a velocity far removed from the mean 
velocity of the pattern to interact violently with neighbouring eddies thus 
becoming rapidly distorted. To this extent the two effects might well be 
mutually reinforcing. 

It is interesting to note that a mutual uncertainty must always exist in the 
presence of shear forces with regard to the respective values of the wave-number 
and velocity although their product may be known exactly. A single-point 
measurement can be used, theoretically at least, to yield the frequency of a 
component eddy giving the instantaneous product w = KU.  However, this 
single measurement yields no information about the eddy velocity. However, 
if now the eddy is permitted to travel a finite distance in order that its velocity 
may be measured it may become distorted by body forces. Thus although its 
velocity is now known exactly an uncertainty exists in the wave-number K .  
that the temporal rate of change of the auto-correlation, in a frame of reference moving with 
the convection velocity, shall be equal to the temporal rate of change of the cross-correlation 
curve a t  that point. In any arbitrary frame of reference the apparent rate of change of the 
pattern will be the algebraic sum of the spatial and temporal rates of change. Thus Wills’s 
condition that the spatial rate of change shall be zero in a frame of reference moving with the 
convection velocity is satisfied and the choice between the two definitions is seen to be 
merely one of experimental convenience. However, it is important to notice that a velocity 
based on the ratio x / r  at the point where aR(x, T ) / &  = 0 does not constitute an equivalent 
definition, as Wills points out. In  addition very little physical significance can be attached 
to such a definition as it merely represents the velocity of a frame of reference in which, at 
the point considered, the temporal and spatial rates of change of the pattern are of equal 
magnitude, but of opposite sign. 
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Let us now return to the problem of obtaining turbulence scales from 
spectrum measurements. A stationary observer while observing an eddy of 
apparent frequency w has, a priori, no method of deciding whether this fre- 
quency is due purely to the passage of the eddy past him a t  the convection 
velocity or whether it is due to the combination of convection and temporal 
fluctuations. Thus it is only when the temporal frequencies are small compared 
with those due to convection that a reasonable estimate of the wave-number 
spectrum can be obtained from the measurement of a frequency spectrum. 

It is also apparent that the space- and auto-correlation curves are no longer 
exactly related in an unfrozen pattern of turbulence. The distortion of the 
pattern as it is convected between two measuring positions, distance x apart, 
causes the auto-correlation R(7) (where r = x/U,) to have a value less than 
the space correlation R(x) .  

A knowledge of the moving-axis time scale and the shape of the moving axis 
auto-correlation will still permit the transformation between the space and 
auto-correlation to be performed, but having obtained this information sufficient 
experimental data is usually available to measure either or both directly. It 
should perhaps be mentioned that although the transformation cannot be 
performed exactly in an unfrozen pattern of turbulence it often happens that 
the moving-axis time scale is sufficiently long to perinit a reasonable approxi- 
mation to be obtained. However, it  cannot be too strongly emphasized that 
care should be taken to investigate the degree of approximation involved and in 
particular to ensure that the correct value of the convection velocity is used. 
Further, previous experiments (Davies, Fisher & Barratt 1963) indicate that 
the variation of convection velocity across the shear layer of a subsonic jet 
bears little resemblance to the variation of the mean velocity, the former 
varying far less rapidly. The mean velocity should therefore never be used in 
place of the convection velocity. 

To summarize for a non-frozen pattern we see that : 
(a)  The convection velocity can be measured from a knowledge of the value 

of the time delay at  which the envelope of a series of cross-correlation curves 
touches that curve corresponding to a given measuring-point separation. The 
convection velocity and the mean velocity are not identical in this situation. 

(b)  The space- and auto-correlation curves are not exactly related and 
attempts at a transformation of the type suggested for a frozen pattern leads 
to an underestimate of the space correlation. 

( c )  The turbulent spectra and the scale of turbulence are no longer simply 
related. 

To relate the frequency spectrum of a non-frozen pattern of turbulence to its 
wave-number spectrum the following features require investigation. First, it 
must be ascertained whether or not various wave-number components are 
convected downstream at the same velocity. Secondly, the change of apparent 
frequency of a particular wave-number component when observed in a fixed 
frame of reference, due to any purely temporal fluctuations must be estimated. 
Hence, ideally, we require to isolate various wave-number components and 
then to perform cross-correlation measurements on these components. Thus 
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the convection velocity could be measured as a function of eddy size and trans- 
formation of the associated moving-axes auto-correlations would yield the 
spectrum of the temporal fluctuations associated with these various components. 
However, techniques for the isolation of particular wave-number components 
are not at present available. In  the present experiment, described below, 
various fixed-axes frequency components have been isolated and the convection 
velocity measured as a function of apparent frequency. In  addition the spectrum 
of temporal fluctuations associated with these various components has been 
obtained by transformation of their moving-axes auto-correlations. However, 
it  should be carefully noted that this experiment, although the best available 
approximation to the ideal experiment mentioned above, differs from it since 
each fixed-axes frequency component comprises a band of wave-number com- 
ponents and an associated band of temporal fluctuations. It is only when the 
frequencies associated with the temporal fluctuations are small compared with 
frequencies observed in the fixed frame of reference that the moving-axes 
spectrum can be considered to be that associated with a particular wave- 
number component. 

1.4. The amplitude of filtered correhtions 

A previous experiment, involving the correlation of filtered wall pressure 
fluctuations of a turbulent boundary layer, has been performed by Harrison 
(1958). The results indicate that if the pressure fluctuations, as measured at 
two points, one directly upstream of the other, are first filtered and a space 
correlation then performed on the filtered signals, the amplitude of the corre- 
lation coefficient is a unique function of the Strouhal number fx/& The 
attractions of such a result, if it  could be shown to be generally applicable to 
turbulent fluctuations in a shear layer over a wide range of frequencies, are 
apparent, since the measurements of the space correlation curve at  one fre- 
quency would permit the calculation of similar curves at  all other frequencies. 
However, the result contains, as we shall see below, an anomaly suggesting that 
low-frequency components must remain correlated over very considerable 
distances. It was therefore decided to investigate in some detail the range of 
applicability of this result when applied to axial velocity fluctuations in the 
mixing region of a jet. 

Let us first consider the implications of Harrison’s result. Suppose we have 
a completely frozen pattern of turbulence, being convected between two 
measuring positions. If we now select an infinitely narrow band of frequencies 
from both signals and measure the cross-correlation in this narrow band, we 
find the correlation curve obtains the value unity at a time delay 7 where 
7 = x/C{ and then follows a cosine law, with the periodicity of the filter about 
this point. Thus, 

Rf(x ,  7 )  = COS 27Tf(T-X/&) 

and the filtered space correlation is therefore 

R,(X, 0 )  = cos(2rrfx/U,). 
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Thus, for a completely frozen pattern of turbulence we would expect the value 
of the filtered space correlation to be a unique function of the Strouhal number 
as shown by equation (1). 

Let us next consider the analogous case when the pattern is not frozen. The 
cross-correlation will rise to a maximum at a value of time delay given approxi- 
mately by r = x/U, and thence vary according to the cosine law as above. 
However, this maximum value will no longer be unity but will have some value 
A less than unity. Thus Rf(Z, 0) = A cos (Znfx/l.i,). ( 2 )  

If now the filtered space correlation is to be a function of Strouhal number alone, 
as has been implied, then equation ( 2 )  suggests A must similarly be a function 
of Strouhal number only. Since A represents closely the maximum amplitude 
to which a given cross-correlation curve will rise, if it  is to be a function of 
fxiU, alone, i t  is apparent that low-frequency components must have a moving- 
axis auto-correlation which decreases extremely slowly in time compared with 
the higher-frequency components. We are thus led to the anomalous result that 
low-frequency components are very little effected by shear. 

In  the present experiment the necessary correlations have been performed 
on the axial velocity fluctuations to investigate the dependence of filtered space 
correlations on Strouhal number, over a useful range of frequencies. It is found, 
unlike Harrison’s results, that the amplitude is not a function of Strouhal 
number alone. 

2. The experiments 
The velocity fluctuations have been measured using the constant-temperature, 

hot-wire anemometer system previously described by Davies et al. (1963) ; Davies 
& Fisher (1963). The jet is 1 in. in diameter and in the present experiment the 
stationary probe was positioned 1-5 in. downstream from the lip, half a diameter 
from the jet axis. The second probe was similarly positioned and then moved 
to successive positions downstream of the first on a line parallel to the jet axis. 
This location was chosen for the experiment as it was known from previous 
experiments that the moving-axis time scale is shorter here than farther down- 
stream. Since the unique variation of the filtered space correlation with Strouhal 
number and the exact relationship between turbulent spectra and scales has 
been established for a frozen pattern (i.e. infinite time scale) it was obviously 
desirable to work in a region of the jet where the time scale is short. 

The signal from the hot-wire set consists of a d.c. level corresponding to the 
mean velocity, with an ax.  component, representing the turbulent fluctuations, 
superimposed. The d.c. level was removed using a blocking condenser and thence 
after suitable attenuation the signal was recorded on the F.M. system of an 
Ampex tape-recorder. Some care was taken to ensure that the capacitor- 
resistor circuit formed by the blocking condenser and attenuator had a flat 
response over the frequency range of interest. The high signal-to-noise ratio 
( 2 50 db) available using a frequency modulated recording system is desirable, 
particularly when comparing correlations of components in a falling part of the 
energy spectrum, as will be seen later. 



106 M .  J .  Fisher and P. 0. A .  L. Davies 

The signals from both hot wires were recorded simultaneously on two tape- 
recorder channels which had been previously checked for phase differences. 
For the purpose of correlation the signals were played back through two matched 
Bruel and Kjaer &-octave filters to the Southampton correlator. A time delay 
unit was also used to perform cross-correlations. Both the correlator and time 
delay unit have been described in detail by Allcock, Tanner & McLachlan (1962). 

3.1. Results 

Before proceeding with the filtered correlations the cross-correlation of the 
overall signals were measured. The results, plotted as a function of time delay, 
are shown in figure 1. Each curve corresponds to a different measuring-point 
separation. The separations used are indicated on the diagram. The envelope 
of these curves, the auto-correlation in the moving frame of reference, is also 
shown. The convection velocity, measured by plotting the wire separation 
against the time delay at which the envelope touched the cross-oorrelation 
curve was found to be 0-61 U, where U, denotes the jet exit velocity. 

The turbulence signals were next filtered into -$-octave bands at centre frequen- 
cies of 500,800,1250,2500,4000 and 5000 c/s and the cross-correlations of these 
signals measured. Three typical results are shown in figures 2(a),  (b) and (c). 
The result of plotting the value of the correlation coefficient at the intersection 
of the moving axes auto-correlation curve and the cross-correlation curve 
against the corresponding hot-wire separation is shown figure 3. This shows 
that the rate of decrease of optimum correlation with distance is to a first 
approximation independent of frequency over the range 500-1250 CIS, but a 
more rapid decrease is apparent for the higher-frequency components. 

The convection velocity has also been measured for the various frequency 
components in the manner described during the discussion of the overall signals. 
The results, shown in figure 4, show a definite increase of convection velocity with 
frequency from 0-45U0 a t  500 c/s to 0.68U0 at 5 kc/s. It is also apparent from 
comparison of figures 2 (u), (b) and (c) that the moving-axis time scale decreases 
as the frequency is increased above 1250 c/s. The variation of this scale is shown 
in figure 5. 

2.2. Discussion of the results 

Before proceeding to examine the variation of the filtered space correlation with 
Strouhal number two precautions which are necessary if erroneous results are 
not to be obtained will be discussed. 

(a )  The efject ofJinite bandwidth. The first involves the necessity in practice 
of using a finite bandwidth when filtering the signals. This means that the 
cross-correlation curve, instead of being an undamped cosine wave as suggested 
for an infinitely narrow filter band, is damped on either side of its main peak, 
which will occur close to r = x/U,. If therefore the curve passes through several 
cycles between T = x/U, and T = 0 the net effect is an underestimate of the 
filtered space correlation. This effect will obviously be more prevalent at  higher 
frequencies and will therefore cause these values of the space correlation to be 
particularly underestimated, a fact, which as we shall see later might well 
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FIGURE 2.  Space-time correlations of axial velocity fluctuations filtered in +-octave bands. 
( a )  Centre band frequency = 1.25 kc/s; ( b )  centre band frequency = 2.5 kc/s; (c) centre 
band frequency = 4 kc/s. 
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suggest a unique dependence of the space correlation on Strouhal number at 
least for the higher frequency components (see figure 6 ) .  In the present series 
of experiments the correlation has been measured over the complete range of 
time delays from r = 0 to 7 > x/U, so that an estimate of this effect can be made 
and allowed for in the final value of the space correlation. 
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( b )  The effect of electronic noise. Suppose we wish to correlate two signals vl 
and v2. Then their true correlation coefficient R, is 
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However, suppose superimposed on these signals we have a certain amount of 
noise introduced by the electronic systems through which the signals have been 
passed. Let these be a and b on signals vl and v2, respectively. Then the apparent 
correlation coefficient R, is 

- 

I I I I I I I 

Since the signal and noise and the two noise signals are mutually random, ~ _ _ -  
v? = 2)2a = vlb = v,b = ab = 0. Thus if we write 

- _  
a2/v? = El and = E,, 
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we find the ratio of the true correlation coefficient to the apparent value is 
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RTIR, = {(1+El) (1+E2))4. 

Thus it is appa,rent that the effect of electronic noise is to reduce to correlation 
coefficient by a factor which depends on the mean-square signal-to-noise ratios. 
Precautions to ensure that this effect does not appreciably alter results are 
particularly import'ant when performing correlations in frequency bands over 

FIGURE 6. Amplitude of filtered space correlations. 

a range of frequencies where the spectral density may decrease appreciably, 
thus increasing the factors El and E2 if it is assumed that the electronic noise 
is evenly distributed over all frequencies. 

In the present experiment the turbulence spectrum function can be considered 
to be flat up to some frequency f, and then to decrease at  6 db per octave beyond 
this point. For the stationary upstream probe f, was approximately 1600 c/s, 
whilst for the downstream probe the value was somewhat lower depending on 
its position. Returning now to figure 3 we see it is for components of frequency 
greater than 1250 CIS that the measured correlation coefficients begin to decrease 
more rapidly, suggesting at first sight that this is due to a decrease of the signal- 
to-noise ratio as the spectral density decreases. However, calculations of the 
noise levels necessary, if the decrease of moving-axes time scale with increase 
of frequency were due entirely to this effect, indicate not only are these levels 
far in excess of those present, but in addition an increase of the actual level in 
one or both channels would be necessary as the probe separation is increased if 
the effect were to be entirely eliminated on this basis. Thus it seems fair to 
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conclude that in fact the decrease of the moving-axes time scale above the 
frequency f ,  is a real effect, although the exact extent to which it may be ampli- 
fied by noise is not entirely certain. 

2.3. The dependence of the Jiltered space correlations on Strouhal number 

We have previously noted in equation (3) that the filtered space correlation is 
given by R,(x, 0) = A cos (anfx/C(.). 

Thus we can calculate the value of R,(x, 0) for any value of the Strouhal number 
if A is known. For a particular frequency and convection velocity the value of 
x corresponding to a Strouhal number can be found and A can then be obtained 
from figure 3. The result of computing the filtered space correlation for the 
various frequency bands is shown in figure 6. It is apparent that although the 
curves are damped cosine curves, as expected, the amplituded increases with 
increased frequency throughout the range of frequencies investigated. The 
difference is particularly noticeable near the peaks of the curves. It is felt that 
this method of computing the variation is more satisfactory than the plotting of 
isolated experimental values since in the latter case only a few points in the 
region of the peaks may be available for comparison leading to erroneous con- 
clusions. However, the comparison of the curves with direct measurement of 
the space correlation agree very closely once the latter have been corrected for 
bandwidth damping. It must be concluded therefore that the filtered space 
correlation is not a function of Strouhal number alone. In  fact the results of 
figure 3 indicate that below the spectrum break point the value of A in equa- 
tion (2) is independent of frequency and although a decrease is apparent above 
this value it is not sufficiently rapid to yield a Strouhal number dependence. 

2.4. Spectra in the moving frame 
We have previously noted in $1 .1  that the spectrum of the turbulence, as 
observed in the frame of reference travelling with the convection velocity, can 
be obtained by transformation of the auto-correlation in this frame. Denoting 
this auto-correlation by R(z - Uc7, 7 )  the non-dimensional spectrum function is 

W ( f )  = 4JmR(x-CLr, r)coswrd7. 
0 

If further we assume the moving-axes auto-correlation to be of the form 

R(x- Ucr, r )  = e-Kr, 

where K is obviously the reciprocal of the moving-axes time scale, the spectrum 
function is 

It should be noted here that a,lthough the a.ssumed form for the auto-correlation 
shows good agreement with theexperimentally determined form (viz. figures 3 (a ) ,  
(b)  and (c ) )  over a large portion of the time delays of interest it is expected that 
in the limit of zero time delay the auto-correlation coefficient will approach the 
value unity asymptotically rather than with the finite gradient - K ,  as sug- 

W ( f )  = 4K/(w2+K2).  (3) 
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gested by the present expression. The net effect of this would be to cause the 
spectrum function to decrease at  the higher frequencies rather more quickly 
than is suggested by (3). 

The spectrum functions for the 1250 and 5000 c/s fixed-axes components, as 
seen in frames of reference moving with their respective convection velocities, 
are shown in figure 7. It can be seen that, unlike the frozen pattern which, when 
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FIGURE 7. Spectra of temporal fluctuations associated with various components 
of the turbulent flow. 

viewed in a similar frame of reference, contains only components of zero fre- 
quency, the energy of these components is spread over a large frequency range. 
In fact consideration of equation (3) indicates that half the energy is contained 
above the frequency given by w, = K ,  whilst 20% of the energy is above a 
frequency w: = 3K. For the 1250 c/s component the energy in the moving frame 
is thus evenly distributed about a frequency f = 200 c/s whilst for the 5 kc/s 
fixed-axis component the equivalent figure is 700 c/s. We see therefore that in 
both cases for half the energy measured in these frequency bands an uncertainty 
exists in the wave-number of the order of 15 yo whilst for 20 yo of the energy this 
uncertainty rises to almost 45%. It is further of interest to notice that the 
figure of 15 yo is of an order consistent with the value of Iu - U.1 /U of t'he order 
of 19% found in this region of the jet, indicating that it is fluctuations of 
velocities about the convection velocity that are responsible for the temporal 
fluctuations. 

We have observed in figure 4 that the measured convection velocity is a function 
of frequency rising by some 30 % between 500 c/s and 5 kc/s. This would suggest 
that in general the higher-frequency components contain a rather higher 

2.5. The variation of convection velocity 
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percentage of the faster moving eddies than do those of lower frequency. Thus 
to some extent an eddy may appear as a high frequency because of its excessive 
velocity rather than its high wave-number. 

A further feature worthy of mention at  this time is the variation of convec- 
tion, as measured using the unfiltered signal, with position across the mixing 
region previously reported by the present authors (1963). These results have 
indicated clearly that the convection velocity is higher than the mean velocity 
in the outer half of the mixing region, the converse being true for the inner 
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FIGURE 8. Probability density of the velocity fluctuations. 

portion. Subsequent experiments, Davies & Fisher (1963), to measure the 
probability distribution of the velocity fluctuations indicate that a positive 
skewness exists on the outer half of the mixing region, whilst a negative value is 
found towards the potential cone (see figure 8). The mean value of the fluctua- 
tions is defined such that if v denotes the magnitude of a fluctuation relative to 
the mean then Jvdt is zero. Thus if the velocity makes an appreciable number 
of large positive excursions, as is indicated by a positive value of the skewness, 
these excursions must exist for a shorter time than those smaller excursions in 
the negative direction in order that /vat should remain zero. Conversely in the 
region of negative .skewness the negative excursions must exist for a relatively 
shorter time than the smaller positive fluctuations. The results of the con- 
vection velocity measurements, however, indicate that the measured values 
are strongly influenced by these large fluctuations in spite of the short time 
for which they are present. 

Consideration of the definition of the cross-correlation coefficient ($1.1) shows 
that this is the effect to be expected. Consider two velocity fluctuations v1 
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and v2, vl being a large positive excursion existing for time st,, whilst v2 is a 
smaller negative fluctuation existing for a longer time &t, such that 

Vl6t ,+V26t2  = 0. 

If now it is assumed that both vl and v 2  reach the second measuring position 
undistorted then their respective contributions to the covariance will be vt6tl 
and v;8t2. Thus it is the large excursion component which makes the larger 
contribution to the total covariance the difference being 

v2,sttl-v;8t2 = v;st2[(st2/stl) - 11. 
In the case considered the larger excursion component is travelling with the 
greater velocity. Thus the position of the cross-correlation curve in time, from 
which the convection velocity is estimated will be largely controlled by this 
velocity. It seems probable therefore that this effect is the cause of the observed 
difference between the mean velocity and convection velocity across the mixing 
region. It is also of interest to note that it is in the region of almost,zero skew- 
ness, at  the centre of the mixing region, that the two velocities are most nearly 
equal. 

We have seen above that it is the ‘squaring ’ process which causes the large 
fluctuations to have a higher contribution in spite of the fact that they are of 
shorter duration than the small amplitude components. A similar squaring 
process is undertaken when obtaining an energy spectrum. Therefore once again 
it is the large amplitude fluctuations which will contribute most to the spectrum. 
These are, however, moving a t  velocities relatively far removed from the mean 
velocity so that, even ignoring errors due to temporal fluctuations, any attempt 
to transform these measurements to obtain space scales using the mean velocity 
will be in error by an amount which will be a function of the skewness. 

3. Conclusions 
In  the course of the present paper we have seen that the presence of mean 

shear and an appreciable turbulent intensity in the mixing region of a jet make 
the interpretation of turbulence measurements considerably less clear cut than 
would be the case for a frozen pattern. In  particular the transformation of 
measurements made at a single point, as a function of time, to space measure- 
ments is made sufficiently uncertain for the present authors to advocate the 
use of two-point space measurement wherever possible. Although most of the 
present experience has been gained in the mixing region of a jet, there seems no 
reason why similar difficulties should not be experienced in other fields of 
turbulence measurement, where the values of shear and intensity are similarly 
appreciable. 

The results of measuring energy spectra of the various fixed-axes frequency 
components in frames of reference moving with their respective convection 
velocities has shown that the energy is spread over a considerable band of 
frequencies. With the assumption of an exponential form for the moving-axes 
auto-correlations this energy is evenly distributed about a radian frequency 
which is the inverse of the moving-axes time scale. Using the experimentally 
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determined values of this time scale this frequency has been shown to be of the 
order of 15 % of the fixed-axes frequency, a value suggesting that these tem- 
poral fluctuations may, to a large extent, be due to the range of velocities about 
the convection velocity. An interesting experiment to investigate this effect 
further would be the measurement of the probability distributions of the various 
fixed-axes frequency components. A comparison of their various flatness factors 
would indicate whether the low spectral density of the higher-frequency com- 
ponents was due to the fact that these were small amplitude fluctuations, or 
whether they are in fact larger amplitude components of a more intermittent 
nature as is suggested by their moving-axes spectra. Considerable care would 
be necessary in such an experiment to ensure that the filter edges were suf- 
ficiently sharp to ensure that attenuation of signals with frequencies near the 
band edges did not appreciably alter results. 

The observed differences between the mean velocity and convection velocity 
have been shown to be due to the skewness of the probability distribution of the 
velocity fluctuations. A useful piece of theoretical work at this time would be 
the derivation of a relationship between this difference and the value of the 
skewness. In  the present experiment, working in a region of almost zero skew- 
ness, it has been demonstrated that the convection velocity increases with 
increased frequency suggesting to some extent that the high-frequency com- 
ponents are due to the high-velocity eddies rather than large wave-number 
components. Further information relating to this point could be obtained from 
the skewness of the probability distributions measured as suggested above. For 
example, a negative value of skewness for the low-frequency components and a 
positive value for the high-frequency components would suggest that very little 
correlation exists between wave-numbers and fixed-axis frequency. It is un- 
fortunate that in performing such an experiment the skewness would be 
measured relative to the mean value of the particular component rather than 
relative to the mean value of the total signal. This means that the absolute 
value of the velocity would be lost. However, it is felt that, in spite of this 
disadvantage, some useful qualitative information could be obtained. 

The authors are grateful to Prof. E. J. Richards and other members of the 
department for their helpful suggestions offered during the course of this work 
and in particular to Mr P. E. Doak for much helpful criticism. Thanks are also 
due to D.S.I.R. for their interest and financial support. 
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